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Gerald G. Brown
Naval Postgraduate School
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Abstract

If a linear program (LP) possesses a large generalized network (GN) subma-
trix, this structure can be exploited to decrease solution time. The problems of
finding maximum sets of GN constraints and finding maximum embedded GN
submatrices are shown to be NP-complete indicating that, reliable, efficient solu-
tion of these problems is difficult. Therefore, efficient heuristic algorithms are
developed for identifying such structure and are tested on a selection of
twenty-three real-world problems. The best of four algorithlms for idritifying GN":4
constraint sets finds a set which is maximum in twelve cases and averages 99.1..
of maximum. On average, the CN constraints identified comprisO" more than
62.3% of the total constraints in these problems. The algorithm for identifying
embedded GN submatrices finds submatrices whose sizes, rows plus columns,
average 96.8% of an LP upper bound. Over 91.3- of the total constraint matrix
was identified as a GN submatrix in these problems, on average.

"The act of being wise is the act of knowing what to overlook."

William James (ca. 1890)

1. Ihtrodaction
Large-scale linear programming (LP) models frequently have sparse

coefficient matrices with special structure. If special structure can be
identified, it can often be exploited to reduce the cost of solving the LP. "Direct
factorization," e.g. [13], maintains a partitioning of the rows and/or columns of
all simplex bases. Computations arc reduced with respect to standard methods
if special structure can be isolated within the partitions. "Decomposition," e.g.
[14], splits a problem into a master problcm arid one or more subproblems. This
technique is most efficient when subproblerns consist entirely of special struc-
ture allowing their rapid solution. The details of these exploitation schemes will
not be discussed here.

.. • " "°.
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Useful structures found Tibtdded in a subset of the rows arid/or columns
of an 1I constraint matrix iwilndc simple upper bounds (at most one nonzero
element in each row). generalized upper bounds (GUHl) (at most one nonzero
coeflieient in each column), and networks (at most two nonzero elements in

each colurnn). Varieties of embedded networks include the general ease, gen-
eralized networks (CN), generalized transvshipment networks (GT) (at most one
coefficient not equal to + 1), and pure networks (NET) (at. most one + 1 and one -1
in each column).

Simple upper bounds. CUB and N17 structures have been exploited in vari-
ous comn'reial and Lxpurinictl|tal opLinliZatorI S)zytilli, .od ufliciujit diILeojia.

identification schu.mcs have been developed to fltI hiese strutlures, e.g.,
[4.7.!].

Recent research has produced very efficient specializ'd simplex algoritLhms
for solving network problems (For example, see 131 for NET, 161 for .N, arid
[6,11] for CT.). This research has, in turn, been exploite(d to dcvelop fa'lorizud
optimization systems r, ieh solve general LP problems with a set of rot's exhibit-
ing NET structure [12], GN structure [15], and CT structur% [12, 19]. Even Wort
recently, optimization systems have been tested which use direct. factorization-
[191 or primal and/or dual decomposition [Ii] to c;ploi cmbedded GN struc-
ture.

Now that soRware is available to solve GN (and GT) problems [6), it is very
". likely that several research groups will exploit GN in various ways in the near

future. To support this research, we are interested in efficiently and aut.omnai-
cally identifying GN structure of the following varieties in general lP CeoLfficit'llt
matrices:

Pi GNc A subset of I.P colunis which are GN, or

CNR A subset of LP rows which are GN, or

GNp.c An embedded ON within a subset of the rows and Columns or 1P.

Because the efficiency of solving a general LP with CN-exp;oiling methods is
enhanced if the CN structure is large, maximum GN structures are our goal.

" Th's leads to the maximization problems described below,.-

Let A=Ija be the mxn coeffienerut matrix of LP, ard let l1-h~j be the
associated 0-1 incidence matrix for A The three maximization problens, forruu- ..
lated as integer programs, are

.4 (GNc): max r--. ~c '9- -
C

s.t. Eh cj i -- 2 forallj

where cj is a binary decision variable indicating inclusion of column 1 in CNc;

"b"~ ::(CNIR): MIX E ri ":

s't. Vhjr 1 -<2 forallj
i

}r.-

' where r, is a binary decision variable indicating inclusion of row i in CNR; and

. * . . . . .. . . . . .. , ..-. .
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M(GNRC): max, r + cj
S. R.C j 

"

s., 2hgrt + mj cj !! r2+" forall-

. : ..-

where ri and cj are binary decision variables indicating respective inclusion of
row i and column j in GNR c. and where mj kj - 2. Note that our definitions " "-

of maximum GN factorizations are expressed simply as the sum of the rows
and/or columns included.

Much work has been done on the development of algorithms to identify spe-
cial substructures in LPs. Previous work in identifying GUB subsets of con-
straints is well known [4.7]. Brown and Wright [8] have explored ways to identify
NET subsets. Extraction of hidden NET structure with general linear transforma-
tions has been discussed by Bixby and Cunningham [2] and by Musalem [20].
Identification of GN row sets and other structures has been proposed by Schrage
[21].

The problems of identifying maximum GUB and NET constraint subsets are
NP-complete, and consequently, exact solutions cannot be guaranteed to be
obtained quickly. Since GUB and NET constraints are special cases of GN con-
straints, it is to be expected that exact solutions of the GN identification prob-
lems will also be difficult to obtain. We show that the GN identification problems
are, in fact, NP-complete, but also give effective and reliable heuristic algo-
rithms for them.

In section 2, the complexities of the three maximization problems are
investigated. M(GNR) and M(GNRC) are shown to be difficult so, in section 3,
efficient algorithms are developed for finding approximate solutions to these
problems. Four specialized integer programming heuristics are described for
identifying maximal GNR sets. Two of the algorithms are "addition" heuristics
which begin with the empty CNR set and successively add rows while maintaining
feasibility. The other two algorithms are "deletion" heuristics which begin with
an infeasible GNR set and successively delete rows until a feasible set is found.
Algorithm GNRC for ,(GNR.c) takes as input the GNR set found by any one of the
the GNR heuristics. Then, it successively adds rows which introduce the least
amount of weighted infeasibility and drops those columns where an infeasibility
results. In this way, a sequence of GNR.C sets is produced and the maximum of
these taken to be the heuristic solution to M(GNR.c). After the algorithms are
presented, computational experience is given in section 4.

2. Complexity
In this section we investigate the complexity of M(GNc), M(GNR), and '':

M(GNR.c). M(GNc) is trivially solvable in polynomial time by choosing all columns
with at most two nonzero elements in them; consequently. its complexity will not
be discussed further. The other two problems are more interesting.

Following standard practice, M(GNR) and M(GNRc) will be studied with
respect to their associated decision problems:

D(GNR): Does there exist a set of rows R in II such that, for positive integer
k <n,

IRI Ztk and Eh _2 forallj?
tLR

%"
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D(GNFRC): Does there exist a set of rows R and columns C in H such that. for
positive integer k <m +n,

RI+ ICI k and Eh~j!S2 foralljeC?
tcR

Of course, a polynomial algorithm for one of the above decision problems would
imply a polynomial algorithm for the associated maximization problem using,
say, a binary search on the values of k.

We consider the complexity of D(GNR.c) first. Yannakakis [24] investigated
the problem of finding the least number of nodes which can be deleLed from a
bipartite graph such that the resulting induced subgraph has a particular pro-
perty. Restated in terms of the decision problem, he gives the following
theorem on 0-1 matrices as a corollary of his results on graphs.

Theorem 1: Let Q be any class of 0-1 matrices which is closed under permuta-
i tion and deletion of rows and columns. Let H be an ,vxn 0-1 matrix, and let k

be some positive integer, k < M+n. Then, finding an m 0 xn0 submatrix I'L of If
such that H F Q and mo+n0  k is polynomial if the matrices of Q have bounded
rank and is NP-complete otherwi.e.

It is assumed above that membership in Q can be determined in polynomial time
for a matrix of bounded size (otherwise, NP-hardness would be implied). -

This theorem is impressive in that it handles the NP-completeness question
for 0-1 matrices in a wholesale fashion. The NP-completeness of D(GNRc) follows
as a simple corollary.

Corollary 1: D(GNRC) is NP-complete.

Proof: Let Q be the class of 0-1 matrices with at most two is in each column. Q
is obviously closed under permutation and deletion of rows and columns;
matrices of arbitrarily large rank can be found in Q and membership in Q can
be determined in polynomial time. D(GNR.C) for the incidence matrix II is
equivalent to searching for an m 0 xn 0 submatrix 110 of II such thai 110EQ arid
mo+no _ k. Therefore, by Theorem 1. D(GNR.C) is NP-complete.

A 0-1 matrix H is represented as a bipartite graph with nodes on one side of
the bipartition corresponding to rows, nodes on the other side of the bipartition
corresponding to columns, and an edge (ij) for each hj =1. D(GNR)
corresponds to a node-deletion problem with deletions restricted to one side of
the bipartition; Yannakakis's results do not directly apply since they pertain to
node deletions on either side of the bipartition'. Therefore, we use a problem-
specific proof to show that D(GNR) is NP-complete.

Lemma 1. D(GNR) is NP-complete.
Proof: For ease of representation, D(GNR) will be equivalently stated in matrix
nulaotiorn:

D(GNR): Does there exist a binary m-vector x such that lx> k and HTx!- -2?
D(GNR) is obviously in NP. We show that it is NP-complete by a transformation
from the "Exact Cover by 3-Sets" problem [15], as specialized by Garey and
Johnson [ 10].

D(X3C): Does there exist a binary p-vector y such that ly = q and Ny = 1
% where N is a 3qxp. 0-1 matrix with exactly three Is in each column

and at most three Is in each row?

* Bartholdi [1] has addressed this topic, but. his results are incomplete. For instance,

without additionel restrictions, his Theorem 2 would imply that D(GNc) is NP-complete.

. ., .' -|
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For each row i in N with only one 1 or two is, augment N with one or two unit
vector columns et, respectively. Since none of these columns could be included
in an exact cover of size 9, D(X3C) is equivalent to
D(X3C'): Does there exist a binary vector y of length p +1 such that ly' = q

and (E,N)y' = 1 where E corresponds to L augmenting columns?
By construction of D(X3C'), no set of columns of cardinality less than q could
ever cover all the rows exactly once let alone more than once. Thus, D(X3C') is
equivalent to a "minimum cover problem"
D(NfC): Does there exist a binary vector y such that ly '- q and (E,N)y' > 1?
Let x=1-y. Since each row contains exactly three is, D(MC) is equivalent to a
"maximum uncover problem"

D(MUC): Does there exist a binary vector x such that lx -p+1-q and
(KN)x< 2?

Since all above transformations are of polynomial complexity, and since D(MUC)
is an instance of D(GNR), D(GNR) is NP-complete. -

3. Algorithms
The complexity results of the preceding section indicate that solving

M(GNR) and M(GNR.c) exactly could be very time-consuming. Therefore, heuris-
tic algorithms have been developed for obtaining approximate solutions. We
describe the algorithms for M(GNR) first.

M(GNR) is an integer programming problem of the form max cx s.t. Axb,.
x binary, where all data is nonnegative. Thus, integer programming heuristics
seem appropriate for attacking this problem. Two basic heuristic techniques
exist for solving such integer programs which we label "addition" heuristics and
"deletion" heuristics. An addition heuristic begins with the feasible solution x=O
and successively sets to 1 that variable xj which which myopically maximizes
effective profit. The effective profit associated with xj is cj/a-, where rp is a
penalty whose definition varies between heuristics, but which in some way
reflects the units of feasibility used up by setting xj to 1. The addition heuristic
stop- when when no additional variables can be set to 1 without violating feasibil-
ity. A deletion heuristic begins with the usually infeasible solution r-I and suc-
cessively sets to 0 that variable xj which myopically minimizes loss of effective
profit cj/rj. Here, Vj is a penalty which reflects the amount of infeasibility
currently being contributed by zj=l. The deletion heuristic stops when when a
feasible solution is obtained.

We have specialized two addition heuristic_ and two deletion heuristics to
M(GNR). The addition heuristics begin with an empty C5NR set and successively
add rows to the set until a maximal set is obtained. The delet-ion heuristics
begin with an infeasible GNR set consisting of all the rows, and rows are succes-
sively deleted until a feasible set is obtained. Since a GNA set obtained by dele-
tion may not be maximal, a second phase, an addition phase, is appended to
insure that the set is maximal. To further expand the GN[( set found, it is possi-
ble to devise post-maximal techniques similar to the 2-opt, 3-opt and general k-
opt procedures used in traveling salesman heuristics, e.g., [16,17]. Application
of such techniques was unwarranted, however, since computational results in
section 4 show that excellent approximate solutions were obtained using the
basic addition and deletion heuristics.

The addition heuristics are described by Algorithm CNRa, with variations
"Greedy" and "Toyoda." The effective profit associated with adding row i to the
CNR set is 1/RPj where RPt is a row penalty derived from the current nonmaxi-
mal solution, the nonzero elements in the row and fcasibility requirements.

..... ..... . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~.-.-l-.-.,.'-.-.'-.'.'.'%. ... . ..- "---....."-' .....-..... ... ... --- . : .. ..
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Thus, at each step of the algorithm, the row with the smallest penalty is added
to the GNR set. Feasibility is maintained by setting to infinity the row penalty of
any row whose addition would cause an infeasibility. In the Greedy variation.
RP equals the number of nonzero elements in the row if the penalty is finite.
The Toyoda variation is a modification of an integer programming heuristic
developed by Toyoda [23]. In this heuristic, the finite row penalty RP is based
not only on the number of nonzero elements in the row, but also on how close to
feasibility limits addition of the row would bring the current solution.

The deletion heuristics are described by Algorithm GNRd, with variations
"Dobson" and "Senju & Toyodd.' In this algorithm, each row has a penalty R'P,
which, roughly speaking. indicates how much infeasibility the row is contribut-
ing. I/ RIP is the loss in effective profit if row i is removed from the GNR set..
Thus, this algorithm successively deletes rows with maximum penalty to minim-
ize the loss of effective profit.

Ad Dobson [9] analyzes and gives worst-case performance guarantees for an
addition heuristic for integer programs of the form min cx s.t. Axib, O-x<u x
inte3er, where all data is nonnegative. By simple substitution of variables, how-
ever, the Dobson heuristic may be interpreted as a deletion heuristic for prob-
Ilems in the form of MI(GNR). At each deletion step of this heuristic, RP is the
number of nonzero elements in row i which are contributing to an infeasibility.
If m 0 is the optimal solution to M(GNR) and mD is the heuristic solution obtained
by deletion only, Dobson's worst-case bound on performance is

(m -mD)/(m -iin) _ l 1/k where d is the maximum number of nonzero
k=1

elements in any row. This is the only performance guarantee known for any of
the heuristics implemented in this paper. Unfortunately, the upper bound on
rm0 this yields is rather we .k in practice (See Table 3.). Any addition heuristic

may be used as a second phase for a deletion heuristic, but for the Dobson dele-
tion heuristic, we chose the greedy addition heuristic as the second phase since
the definition of RP, is consistent between the two phases.

The second variant of GNRd is a specialization of the heuristic devised by
Senju and Toyoda [22] which those authors label an "effective gradient method."
For M(GNR), HT maps the set of feasible r values into the n-dimensional hyper-
cube whose sides are of length 2. At every step of the algorithm, given current
infeasible solution r, RPj=(HTr-Z)+h, where the jth element of (Itrr-2)+ is

nl

max JO, 2-Jhjr-2j. RIP, may be interpreted as the length of the projection of

the vector h onto the shortest vector extending from the point HTr outside of
the hypercube to the boundary of the hypercube. The modified Toyoda addition
heuristic is used as the second phase of this heuristic.

The tiio algorithms GNRa and GNRd. %ith their variations, are outlined as
follows:

- o.
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Algorithm GNRa

Input: The LP coefficient matrix A S
Output: A set of row indices IR corresponding to the largest GNR set found in

A
Comment: The basic algorithm is the "Greedy" addition heuristic. The modified

"Toyoda" heuristic is obtained by substituting the statement in
square brackets for its predecessor.

Step 0. "Initialization"
Initialize:

(a) I =bandI'= 1,2. mi.
(b) For each columnj, a column bound

CBj = 2

Comment: CBj is the number of elements column j may con-
tain.

(c) For each iEI', a row penalty
RP,=

a#0

Step 1. "Row Addition"
Let LP = RPS be the smallest row penalty (corresponding to row SEl').

If RP < then

(a) Move s from I' to I.
(b) For each column j such that asj X 0.

(ii) If C i = 0 then for each iis such that aj X 0, letRPi = •: "
= ..-. 7.-

i) For each i{s such that a X 0, if CB= then leR P .E RPj = RPj + 1, else let RPj fC~= hne
(c) Repeat Step 1.

Step 2. "Termination"
Print 'R = I and STOP.

End of Algorithm GNRa

• .o.%

I

.-. 
° 

.
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Algorithm GNRd

Input: The LP coefficient matrix A.
Output: A set of row indices IR corresponding to the largest GNR set found in

A
Comment: The basic algorithm is the "Dobson" heuristic. The "Senju and Toy- -.-.

oda" heuristic is obtained by substituting the statements in square
brackets for their predecessors.

Step 0. "Initialization'.
Initialize:

(a) Im 1,2. and ' .

(b) For each column j, a column penalty

CPj 1)-2.

Comment: CPj is the number of "excess" elements in column

(c) For each iEI, a row penalty
RP,= Ej 1. :

Comment: RPj is number of units of infeasibility which row i
is currently contributing.

(c) For each iE, a row penalty 1
RP,= CP .  ..

Comment: RP is the sum of excess elements in columns with
_a nonzero entry in row i.

Step 1. "Row Deletion"
Let RP = RPI be the largest row penalty (corresponding to row LEI).
If RP > 0 then

(a) Move I from I to I'.

(b) For each column j such that aij ; 0
(i) If CP = 1 [If CPj > 0] then, for each i~s such that

aj e 0, let I 1 I ," - 1.

(ii) Let CPj = CPj - 1.

(c) Repeat Step 1.

Step 2. "Row Addition Penalties"
For each iW!', compute a row penalty

J 1 ifCPj <Oforall aj io 0

00 otherwise.

C,+3) if CPj <0tfor all s 0

00 otherwise.

-:::: : :: :.::::7 __=_== = =_:
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Step 3. "Row Addition"
Let BE = RPI be the smallest row penalty (corresponding to row s cI').
IfR < - then

(a) Move s from I' to I.
(b) For each j such that aj 0 0, let CPj = CPj + 1.

(c) Go to Step 2.
Step 4. "Termination"

Print IR = I and STOP.
End of Algorithm GNRd

The execution times of the above algorithms and the other algorithms
described in this paper are quite short if proper data structures are used. The
initial computation of the row and column penalties can be made very quickly if
the nonzero entries in each row and column are stored in a linked list. Column
penalties are then updated in a single pass of a row. Because of sparsity, row
penalties can usually be updated in passes through just a few columns.
Efficiency is further improved if row and column partitions are maintained with
an indirect address array which allows contiguous access. Associated with this
mapping array, a second array expresses the inverse map to speed updating.

An easily computable upper bound on M(GN), denoted (iBR, is useful for
checking the efficacy of the above algorithms. Algorithm UBR is designed for
this purpose. Let A, and A2 be a partition of the rows of A and let z, zl and z 2 be
the solutions to M(GNR) on A A, and A2, respectively. If UBI is any valid upper :...
bound on M(GNR) for A, then

Z ! zI +z 2 !
- UB1 + zZ.

Algorithm UBR iteratively applies the above statement, computing the simple
bound UBP and letting A= A2 after each iteration. This is repeated until all
columns of A2 have at most two nonzero elements in them at which point z2 is
equal to the number of rows in A2. UBR is then given by the sum of the UB-
upper bounds found at each iteration plus z2 found at the last iteration. At each
iteration, A is partitioned with respect to that column j having the maximum
number of nonzero entries. A, is all rows of Awith aq 0 and UBI = z, = 2 since
column j has only nonzero elements in A,.

Algorithm UBR

Input: The LP coefficient matrix A

Output: A value UY11, an upper bound on /RI.

Step 0. "Initialization"
Initialize:

(a) I=1,2 .. ,m and UBR O.

(b) For each column j, a column count

cil

Step 1. "Iterat;ve Partitioning"
Let CC = CC be the largest column count (corresponding to column 1).

~~~~ ~ ~~~~~~~~~~~........... ..-............ :.'.....-. -.. "-"-;-"" "'..'..'.'_'.._'-'.L -.>
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If CC > 2 then

(a) Let UBR UBR + 2.

(b) For each iEI such that ad s 0.

(i) Delete i from I.

(ii) For each j such that a. i 0, update column count letting

CCj = CCj - 1.

(c) Repeat Step 1.

Step 2. "Termination"
Print ULR = UBR + I and STOP.

End of Algorithm UBR

Algorithm GNRC, the heuristic for M(GNR.c), is outlined next. Any one of the

integer programming heuristics described for M(GNR) could be applied to this

problem. However, these algorithms will normally give only a single answer to

the problem; our algorithm allows the exploration of a complete trajectory of

maximal GNR~c sets beginning with GNR and ending with GNc. Our algorithm

begins with the set of rows IR found in Algorithm GNRa or GNRd and repeatedly

attempts to expand this set by deleting columns, always saving the largest GNRc

set found. This approach was suggested by manual analysis of several problems

for which the GNR set is limited by a few key complicating columns. Deleting

these columns produced a much larger embedded GNR.c set, and motivated

development of a new factorization LP code which effectively exploits GNRC
structure [ 19].

Algorithm GNRC

Input The LP coefficient matrix A and a GNR set 'R, IRI < in, e.g., IR from
Algorithms GNRa or GNRd.

Output: A set of row indices If.c and a set of column indices JR.c corresponding
to the largest GNR.c structure found in A

SLep 0. "Initialization"
Initialize:

(a) I=IR, I'=11.2. mi-I. J= 1,2, nj, IRc = I . and

JR.C = J.
Comment: I and J are the current sets of row and column
indices while 'R.c and JR.c store the best sets found.

(b) For eeh column jEJ, a column penalty

cP 1 )-2.
9,#O

Comment: These column penalties remain as an artifact of

Algorithm GNRd and can be defined as input.

(c) For each iE', a row cost

RC= 1.

Comment: Rq is the number of columns which must be

deleted if row i is added to 1.

. . - ..-,
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Step 1. "Column Deletion"
Let RC = RC be the smallest row cost (corresponding to row scl).

(a) For eachjEJ such that aj 0 0.

V (i) If CPj = 1 then delete j from J and for each Wcl' such

that aq 0 0, update row costs letting Rq = RC - 1.

(b) Move s from I' to !.

Step 2. "Row-inclusion Penalties"
For each El', compute a row penalty

- (CP,+i) ifCP <Oforall a.j1
RP I Z Cj

D otherwise

Step 3. "Row Addition"
Let RfP = RP. be the smallest row penalty (corresponding to row s I').
If RP-<-0 then

(a) Move s from I' to I.

(b) For each jEJ such that ajs $0

(i) Let CP = CPj + 1.

(ii) If CP3 = 0 then for each iEI' such that aj 0 0, update
row costs letting RQ = RC1 + 1.

(c) Go to Step 2.

Step 4. "Incumbent Test" -_

If III + IJI > IIRCI + I JR,cI then letlR.C= I and J.C J.

Step 5. "Termination"
If I I I < m, then go to Step 1. Otherwise, print IR.C, JRC and STOP.

End of Algorithm GN RC

A stronger test, allowing preemptive termination, is possible at Step 5: If
III <m and m + IJI > IR.cl + IJR.CI. However, the weaker test permits the
exploration of a complete trajectory for GNRc as discussed above.

Along the lines of UBR, an easily computed upper bound on M(GNR.c),
denoted UBRC, was developed to check the accuracy of GNRC. Partition A as fol-
lows:

A= A 1 2 I A12

Let z, zjj and z 2 2 be the solutions to M(GNR) on A All and A.2, respectively, and
let UB 11 be any simple upper bound on M(GNRc) for All. Then

Z! Z I I + Z2 2  UBI + z22.

Algorithm UBRC computes UBRC by iteratively applying the above statement,
computing the simple bound UB 11 and letting A = A2 after each iteration. This
is repeated until all columns of A22 have at most two nonzero elements in them
at which point z 2 is equal to the number of rows plus the number of columns in
AVz. UBRC is then given by the sum of the UBI upper bounds found at each
iteration plus Z22 found at the last iteration. If All is selected such that it con-
sists of single column and three rows, all with nonzero elements, then
UBn, = 211 = 3. Computational experience has indicated an effective rule for

• .. :.. . .
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selecting the partition: Among all columns in A having at least 3 nonzeros, select
that column having the minimum number of nonzeros, and within that column
select the first three rows with nonzeros in them. If k partitions are carried out
before A22 becomes a GN matrix, it follows that:

UR,c = 3k+l 112 1+1J 2  = 3k+(II-3k)+(JI-k)III+IJ I-k.
The last equality is used in computing UBR.C.

Algorithm UI31C

Input: The LP coefficient matrix A

Output: A value UBR.c, an upper bound on IRC + JRC.

Step 0. "Initialization" :1
Initialize:

(a) I = 1,2 . m . and UBR.c Ij+J.
(b) For each column j, a column count

cq ( 1).

icl

Step 1. "Iterative Partitioning"
Let CC = CC be the smallest column count greater than 2
(corresponding to column s).
If no such column exists, go to step 2. Else,

(a) Let UBR.C = UBRC - 1.
(b) For exactly three W~l such that a, ? 0,

(i) Delete i from I.

(ii) For each j such that aq 00, update column count letting
CG = cc -i.

(c) Repeat Step 1.

Step 2. "Termination"
Print UBR.c and STOP.

End of AlgoriLhm UBR

4. Computational Experience
The algorithms described in section 3 have been implemented in I'ORI'RAN,

using the X-System [5] as the host optimization package. Table 1 identifies
twenty-three LP and mixed integer programming (MIP) problems which have
been collected from various sources over the years. Some of these models are
very well known, e.g., Dantzig's PILOT and the U.S. Department of Energy's PAD
and PIES, and most of them were sent to us because of their difficulty, solution
expense, or outright solution failure on commercial optimization systems. Table
I shows problem dimensions excluding right-hand sides and objective functions.
Computation times displayed in Tables 2-4 are compute-seconds, accurate to

. the precision shown, for FORTRAN IV H (Extended) with Optimize(2), run on IBM
3033AP under VM/CMS.

'p.. .:."

'p..
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Table 1. LP/MIP Problem Set

Problem Constraints Variables Nonzero Els. Model

AIR 170 3,040 8,023 Physical Distribution
ALUMINUM 4,045 8.805 27,917 Econometric Production & Distribution
COAL 170 3,753 7,506 National Energy Planning
CUB[CI 657 3,074 15,894 Combinatorics Problem
CUBIC2 2,689 11,905 63,361 Bigger Combinatorics Problem
CUPS 360 618 1,341 Production Scheduling
ELEC 784 2,800 8,462 Energy Production & Consumption
FERT 605 9,024 40,484 Production & Distribution
FOAM 909 4,020 13,083 Production Sched'uling
FOOD 4,010 14,409 23,332 Production, Distribution & Inventory Planning
GAS 788 5,541 31,020 Production Scheduling
JCAP 2,486 3,849 9,510 Production & Shipment Scheduling
LANG 1.235 1,425 22,028 Equipment & Manpower Scheduling
NETTING 69 190 388 International Currency Exchange
ODSAS 4,647 4,995 30.832 Manpower Planning
PAD 694 3,297 15,541 Energy Allocation, Distribution & Consumption
PAPER 2,868 5,348 23,746 Econometric National Production
PIES 662 3,011 13,376 Energy Production & Consumption
PILOT 974 2,172 12,927 Energy Development Planrmng
REFINE 5,220 5,994 40,207 Oil Refinery Model
STEEL 831 1,276 9,808 Econometric Production & Distribution
TRUCK 220 4,752 30,074 Fleet Dispatch (Set Cover)
WADDING 2,991 15,001 82,708 Multicommodity Prod. & Distribution Planning

Algorithms GNRa and GNRd were used to identify GNR rows with Algorithm
UBR used to give an upper bound on the total number or such rows. To check
accuracy, we attempted, within budget limitations, to solve exactly the integer
linear programs for M(GNR) in those cases where I Ip, I <UBR. (We were success-
ful in all but one case, as seen. Times for solving the ILPs averaged 214.1
seconds for those problems solved.) Results for GNRa and GNRd, given in Table 2,
are (a) the size of the optimal GNR set found by the ILP, (b) the size of this set as
a percentage of total problem rows m, (c) the size of the GNR set found by GNR,
(d) the size of this set as a percentage of the ILP optimum, and (e) the time
required by the algorithm. For GNRd, the column labeled I IRI uses the notation
a:b where i is I IRI and b is the number of rows in IR which were gained in the
addition phase of the heuristic. Problems are weighted equally in computing
average percentages in the "Totals" row of the table. Times listed do not include
input or output.

All GNR variants perform quite well. The addition phase in GNRd did not
often contribute a significant fraction of the GN rows found, but the additional
rows found helped make both GNRd variants slightly better than either of the "
GNRa variants. The best algorithm on this problem set, GNRd (Senju & Toyoda),
finds an average of 99.1% of the maximum GNR set on those problems which we
can solve exactly. The GNR sets average 62.3% of the total problem rows on
these same problems. GNR computation times are nominal compared with
actual solution times of the seminal LPs and MIPs.

C" ,
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Results for UBR, given in Table 3, include (a) the size of the optimal GNR set.
(b) the upper bound, (c) the upper bound as a percentage of the ILP optimum, -

and (d) the time required to find the upper bound. For comparison, we include 0
(e) Dobson's upper bound labeled "UBDR" and (f) that bound as a percentage of
the ILP optimum. Table 3 also displays some properties of GNR as found by
GNRd, Senju & Toyoda. These properties include (g), the number of disjoint -

embedded GN components, (h) the largest and smallest components, (i) the
number of null columns, and (j) the number of singleton columns. These proper-
ties are of interest since the structure of the embedded generalized network
affects the solution techniques used in an LP factorization. For exarmple, corn-
ponents consisting of single rows may be handled most etficicntly without utiliz-
ing a complete generalized network code.

Table 3. GNR Features

M(GNR) Algcrit-rn UBR Dobson Bound Embedded GNR Components

Problem ILP Opt. 'JBR 7. Opt. Time rJBDR % Opt. Tote] Largest Smllcst Null Sirn. -

(m +n) (rn+n) Co13. Cols. j..

AI 170 170 CO .0 170 IC0 1 17042.040 - 0 67

ALUMINUM 2.198 2.214 100.7 1.7 3,798 172.8 1,15 1.11843.431 1+1 0 1.234
COAL 170 170 100 .0 170 1O0 I 17C-3.753 - 0 0
CUBICI 312 324 103.8 .2 595 10.7 30 150-.710 1+2 121 012
CUBIC2 1.264 1.332 MAO.4 2.7 2470 106.1 140 5021 0.054 1+0 353 2,488
CUPS 333 336 100 .0 353 1C6.0 13 C0+102 12+12 72 74
ELEC 520 521 ICOD .2 705 132.6 14 71+4C8 2+16 18 174

FRT 572 572 1CO .1 CCO 109 1 5724-9.024 - 0 1.757

FOAM 951 057 IC0a .0 091 1042 11 311+1.321 1+1 14 1.101

FOOD 3.716 3.720 100! .1 393 ICGO 75 1.754 7.147 1+4 512 0.Se3
GAS 73 74 101 1 .1 52 0 9^4.2 11 53t4.711 12 330 6I.C1

JCAP 1.013 1.C31 101.0 .2 2162 2134 130 1104C8 12 82 1.0 -..

LANG 714 726 101.7 .1 1122 1571 3 704+1.225 1P2 i19 311
N L, NG 72 72 1C0 .0 oi II67 17 20 -E0 2-1 23 cc C
OD2AS 1.498 1,510 1008 2.3 4161 2701 115 701+2.403 14 507 1.'

PAD 122 122 100 .0 558 457.5 3 82-1.335 e+33 1.733 1,179
PAIIf-t 1.830 1.0r3 101.5 .4 2703 143.7 4C2 275+1.G1 1+1 675 1.761
PTIS 288 2^2 102.8 .0 571 IrC.3 35 1401,X15 1+2 926 720 0
PiC0T 4170 .1c0 10, 3 .1 87 I*3 7 78 1771 53 14 1 618 62.'

RLZ-i'iZ 3,12~o 3.1ig9 1016 .8 4MiU i1.2:3 5,11 1.5i 2.9d I f1 3 1-1 2. 1 0i
SMEM 431 458 106.3 .1 763 177.0 95 P01541 1+1 2-.3 .5
TRUCK NA IC5 NA .1 107 NA 2 69*3.0C8 1+18 1.703 2..15
WADMG 2.211 2.222 ICC.5 .2 200 12,06 3 g6o -I.ICo 1+1 4.414 5.32

UBR is surprisingly tight, averaging 101.4% of the true maximum, and corn-
putation times arc nominal. Dobson's bound is poor, averagin'; 203.1% of the
true maximum. The GN components found usually consist of a few large com-
ponents and numerous small components. '.. -:.

."-. .. o

• oo .. ..oo. . •. o •. •• •...-.. .. ,. . .. ,.. ... ....-.. - *. ____-_____________-______-____.. ... _.e --- . ..



--

--
16-

Table 4 gives the results obtained by Algorithm GNRC and Algorithm UBRC.
Since no ILP optimum is known for M(GNR.C) in most cases, the items displayed
differ from those items displayed in Tables 2 and 3. The results reported for
Algorithm GNRC are (a) the size of the of the GN&C structure found, (b) the time
in seconds required to find the structure excluding input and output, (c) the size- -

* of the GNRC as a percentage of the total constraint matrix, and (d) the percen-
tage of of the LP upper bound (UBLPKC) achieved by the algorithm. The results
reported for Algorithm UHRC are (e) I 1R.CI + I JR.CI as a percentage of UBR.c, and
(f) the time required to obtain UBRC. For comparison, the last two columns of
the table give the total number of rows and columns obtained for the GNR and
GNC problems. These are the sizes of the embedded GN submatrices when res-
tricted to row submatrices and column submatrices, respectively. Each prob-

* lem is weighted equally to compute average percentages in the "Totals" row.

Table 4. GNp Results

Algoriteu GNRC Ag. UBRC GNR GNC

Problem GN&cIR rc) Time %(m+n) % BLPc stBrC Time IRI+n) IJcI+m

1kAIR 3,210 .0 200 100 100 .0 3,210 3,210
ALUMINUM 9,027 13.6 63.2 91.? 91.7 2.3 8,980 5,508

*COAL 3,923 .0 100 100 10 .0 3,923 3,923
*CUBICI 3,365 .6 00.2 99.4 94.8 .4 3,385 659

CUBIC2 13,098 11.1 89.7 99.5 94.7 6.4 13,096 2,600
CUPS 951 .0 97.2 100 99.7 .0 951 713
ELEC 3,322 .3 02.7 99.0 98.3 .2 3,320 1,042
PEFlRT 9,596 .3 99.7 100 99.9 .2 9,596 2,362
FOAM 4,971 .1 99.0 100 99.7 .1 4,971 1,044
FOOD 18,137 .8 98.5 99.5 99.4 .1 18,125 17,860
GAS 5,920 5.4 935 94.9 94.5 .2 5,614 845

*JCAP 5.822 5.5 91.9 97.? 99.8 .2 4,851 5,718
LANG 2,139 1.1 80.4 97.8 90.2 .2 2,139 1,905
NET7T1NG 262 .0 93.9 97.8 100 .2 262 258
ODSAS 7,558 40.0 78.4 78.0 86.1 1.2 6,470 5.094
PAD 3,621 3.9 90.7 98.8 95.3 .3 3,419 2,418
PAPER 7.388 4.8 89.9 95.9 96.2 .9 7,179 4,905
PIES 3,313 .9 90.2 99.5 94.8 .2 3,299 2.241
P IOT 2,645 1.4 84.1 95.7 91.6 .2 2,634 1,587
R F"iINE 9,326 19.3 83.2 93.8 92.4 2.3 9,1041 7,729

*STEEL 1,700 .9 80.? 91.5 69.7 .2 1,605 1,131
T~l4,822 .5 0710 NA 98.1 ..3 4.V?'! 2?0[WADDLNG 17,209 8.3 95.6 99.7 97.8 1.0 117.209 14,451

Totals 141,321 118.1 91.3% 968% 95.6 17.1 138,232 87,582

NoLe: NA indicates not available.

CNRC performs very well, also. The algorithm finds a GNRC structure whose
size averages 91.3% of the size of the total constraint matrix. The size of the
structure averages 96.8% of the LP upper bound on those problems for which the
bound was obtained. (Times to obtain the LP bound averaged 315.8 seconds.)
With respect to UBR.C the GNc set found averages 95.6%. Thus, the upper
bound provided by algorithm U RC is only slightly weaker, on average, than the
LP upper bound. In addition, UBRC has more than a 400 to compu o tational
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speed advantage over the LP upper bound making it very attractive.
Additional computational studies have been performed to investigate the

structures which GNR and GNRC obtain. Figure 1 summarizes this work for
ELEC. JCAP. PAD. PIES and PILOT. The outer rectangle represents, to scale, the
constraint matrix for each problem. The area above the dashed line represents
the GNR set found by GNRd, Senju & Toyoda. Within this area are indicated the
connected components found by a simple connectivity algorithm. As indicated
previously in Table 3. a few large components are typically found together with
numerous small components. The area to the left of the vertical line represents
the GNC set. The irreguldr lines trace the trajectories of the GNR.C structures
found by GNRC, ranging from GNR on the right to GNC at the lower left. From any
point on this trajectory, all rows and columns above and to the left form a GN
set. The circle indicates the largest GNRC structure found on this trajectory.

5. Conclusion
Although GNc identification is easy, GNR and GNR,c identification is theoreti-

cally difficult. However, maximal, and often optimal GNR and GNR.C substruc-
tures can be found in an LP constraint matrix using the heuristic algorithms
developed here. In some problems, large GNR structures can be found, while in
other problems, it is necessary to remove some columns to find a large embed- -
ded GNR.c structure. Since execution time is modest for heuristic GN
identification, our algorithms can be applied as a matter of course in general
LPs to seek GN substructures. Evidence from the problem set indicates that
this is well-advised if a GN-exploiting method is available: No members of the
problem set were known, apriori, to contain significant GN structure and yet, in
several cases, GN structure was predominant.
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Figure 1. Embedded Generalized Networks
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Figure 1. (continued)
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